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Abstract
Connectionist Temporal Classification (CTC) based end-to-end
speech recognition system usually need to incorporate an exter-
nal language model by using WFST-based decoding in order to
achieve promising results. This is more essential to Mandarin
speech recognition since it owns a special phenomenon, namely
homophone, which causes a lot of substitution errors. The lin-
guistic information introduced by language model is somehow
helpful to distinguish these substitution errors. In this work, we
propose a transformer based spelling correction model to auto-
matically correct errors, especially the substitution errors, made
by CTC-based Mandarin speech recognition system. Specifi-
cally, we investigate to use the recognition results generated by
CTC-based systems as input and the ground-truth transcriptions
as output to train a transformer with encoder-decoder architec-
ture, which is much similar to machine translation. Experimen-
tal results in a 20,000 hours Mandarin speech recognition task
show that the proposed spelling correction model can achieve
a CER of 3.41%, which results in 22.9% and 53.2% relative
improvement compared to the baseline CTC-based systems de-
coded with and without language model, respectively.
Index Terms: speech recognition, spelling correction, CTC,
End-to-End, Transformer

1. Introduction
Conventional hybrid DNN-HMM based speech recognition sys-
tem usually consists of acoustic, pronunciation and language
models. These components are trained separately, each with a
different objective, and then combined together during model
inference. Recent works in this area attempt to rectify this
disjoint training problem and simplify the training process by
building speech recognition system in the so-called end-to-end
framework [1, 2, 3, 4, 5, 6, 7, 8, 9]. Two popular approaches
are the Connectionist Temporal Classification (CTC) [10] and
attention-based encoder-decoder framework [11]. Both meth-
ods regard speech recognition as a sequence-to-sequence map-
ping problem and address the problem of variable-length input
and output sequences. CTC uses intermediate label represen-
tation allowing repetitions of labels and occurrences of blank
label to identify less informative frames, which enables CTC-
based acoustic models to automatically learn the alignments be-
tween speech frames and target labels. On the other hand, atten-
tion based models use an attention mechanism to perform align-
ment between acoustic frames and recognized symbols. Both
methods do not require frame-level training targets, which sim-
plifies the training process of speech recognition system.

CTC assumes that the label outputs are conditionally in-
dependent of each other, which can be seen as an acoustic-
only model. Although CTC-based models can directly gener-
ate the recognition results by using the greedy search decoding
[10], it’s better to incorporate an external language model at

the character or word level by using the WFST-based decod-
ing [12, 13]. On the other hand, attention-based models with
encoder-decoder architecture can jointly learn acoustic, pro-
nunciation and language models. As a result, it is widely ob-
served that attention-based models will achieve better perfor-
mance than CTC-based models when decoded without external
language model [7]. However, the language model component
in attention-based models is only trained on transcribed audio-
text pairs. Further improvements can achieve by incorporating
an external language model during model inference [14].

Mandarin is a tonal language with a special phenomenon,
namely homophone, which many Chinese characters share the
same pronunciation. As a result, the substitution errors are the
dominant error made by Mandarin speech recognition system
[15]. These substitution errors require linguistic information to
distinguish effectively. Thereby, the language model is essen-
tial to CTC-based models for Mandarin speech recognition. As
shown in [13], the performance gap between CTC-based mod-
els decoded with and without external language model is huge.
However, the language model accompanied with CTC-based
acoustic models is usually the n-gram language model, which
has limited history context information. Further improvement
can be obtained by using N-best rescoring with an RNN-LM
[16, 17].

In this work, we propose a transformer [18] based spelling
correction model to automatically correct some errors made by
the CTC-based speech recognition system. Specifically, we in-
vestigate using the recognition results generated by CTC-based
systems as input and the ground-truth transcriptions as output
to train a transformer with encoder-decoder architecture, which
is similar to machine translation. During inference, the spelling
correction model takes the preliminary recognition results as in-
put and generates the final results with greedy search. We have
investigated various CTC-based systems as front-end: differ-
ent acoustic modeling units (syllable, character-2k, character-
4k, character-6k), different optimization criteria (CTC, CTC-
sMBR) and decoding methods (greedy search, WFST search).
Moreover, we propose to use the SGDR [19] optimization based
model training and N-best lists based data expansion methods
to further improve the performance.

We have evaluated our proposed approach on a 20,000
hours Mandarin speech recognition task, which consists of
about 20 millions paired sentences. Our results show that the
proposed spelling correction models can improve the perfor-
mance of CTC system with greedy search from 7.28% to 4.89%
in character error rate (CER). And it can further improve to
4.21% by extending N-best lists as training data. As a com-
parison, the performance of a well-trained CTC-sMBR system
using WFST-based decoding with external word-level language
model is 4.42%. Moreover, by jointly using character based
acoustic modeling units, DFSMN-CTC-sMBR acoustic model,
WFST-based decoding and N-best data expansion, the proposed
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Figure 1: Overall system of the proposed approach.

spelling correction models can achieve a CER of 3.41%, which
results in a 22.9% relative improvement. Our analysis show
that the transformer based spelling correction model can signif-
icantly reduce substitution errors in recognition results, due to
it can utilize the sentence-level linguistic information.

2. Related Works
Automatic correction of recognition errors is crucial not only to
improve the performance of ASR system but also to avoid the
propagation of errors to the post process (e.g. machine trans-
lation, natural language processing). [20] presents an overview
of previous work on error correction for ASR. However, most
of researches were limited to the detection [21, 22, 23] and just
few researches addressed the correction process of ASR errors.
In [24], it built an ASR errors detector and corrector using co-
occurrence analysis. [25] proposed a post-editing ASR errors
correction method based on Microsoft N-gram dataset. More
recently, work in [26, 27] proposed to use the attention based
sequence-to-sequence model to automatically correct the ASR
errors, which is much similar to our work.

3. Our Approach
Figure 1 demonstrates the overall system of the proposed ap-
proach, which consists of three components: listener, decoder
and speller. For listener, we use the DFSMN-CTC-sMBR [15]
based acoustic model. As to decoder, we compare the greedy
search [10] and WFST search [12] based decoding strategies to
generate preliminary recognition results given static sequence
of probabilities generated by the listener. Moreover, we also in-
vestigate how to extend the diversity of preliminary recognition
results with candidate N-best. Finally, the outputs generated by
the decoder are used to train a transformer [18] based speller.

3.1. Listener

3.1.1. DFSMN-CTC-sMBR

DFSMN [28] is an improved FSMN [29] structure that enables
to build extreme deep architecture by introducing skip connec-
tions. The key element in DFSMN is the learnable FIR-like
memory blocks, which are used to encode long context infor-
mation into fixed-size representation. As a result, DFSMN is
able to model the long-term dependency in sequential signals
while without using recurrent feedback. The operation in `-th
memory block takes the following form:

m`
t = m`−1

t +p`t+

N`
1∑

i=0

a`i�p`t−s1∗i+

N`
2∑

j=1

c`j�p`t+s2∗j (1)

Here, p`t denote the outputs of the linear projection layer and
m`
t denotes the output of the memory block. N `

1 and N `
2 de-

notes the look-back order and lookahead order of the memory

block, respectively. s1 is the stride factor of look-back filter and
s2 is the stride of lookahead filter.

Connectionist temporal classification (CTC) [10] is a loss
function for sequence labeling problems that converts the se-
quence of labels with timing information into the shorter se-
quence of labels by removing timing and alignment informa-
tion. The main idea is to introduce the additional CTC blank
(–) label during training, and then remove the blank labels and
merging repeating labels to obtain the unique corresponding se-
quence during decoding. For a set of target labels, Ω, and its
extended CTC target set is defined as Ω̄ = Ω ∪ {–}. Given an
input sequence x and its corresponding output label sequence
y. The CTC path, π, is defined as a sequence over Ω̄, π ∈ Ω̄T ,
where T is the length of the input sequence x. The label se-
quence y can be represented by a set of all possible CTC paths,
Φ(y), that are mapped to y with a sequence to sequence map-
ping function F , y = F(Φ(y)). Thereby, the log-likelihood of
reference label sequence y given the input x can be calculated
as an aggregation of the probabilities of all possible CTC paths:

p(y|x) =
∑

π∈Φ(y)

p(π|x) (2)

Model training can then be carried out by minimizing the
negative log-likelihood. Furthermore, CTC trained acoustic
model can be further optimized with sequence-level discrimi-
native training criteria such as state-level minimum Bayes risk
(sMBR) criterion [30, 28].

3.1.2. Acoustic modeling units

In [15], it have investigated the performance of DFSMN-CTC-
sMBR acoustic models with CI-IF, CD-IF, syllable and hy-
brid Character-Syllable as modeling units for Mandarin speech
recognition. Experimental results suggest that the hybrid
Character-Syllable modeling units, which mixed the high fre-
quency Chinese characters and syllables, is the best choice for
Mandarin speech recognition. For hybrid Character-Syllable,
the low frequency characters are mapped into the syllables to
deal with the OOV problem. In this work, instead of mapping
the low frequency characters into syllables, we propose to map
them into high frequency characters with the same pronunci-
ation. As a result, we come up with a pure Chinese charac-
ters based modeling units without OOV for Mandarin speech
recognition. Specifically, we keep the top 2000, 4000 and 6000
Chinese characters as acoustic modeling units, denoted as char-
2k, char-4k and char-6k respectively. The coverages is 95.58%,
99.54% and 99.86% in our text dataset, respectively.

3.2. Decoder

3.2.1. Greedy search

For greedy search [10] based decoding, the most likely symbol
at each time step is chosen as the output. The best CTC-path
can be generated as followings:

π∗ = arg max
π

N∏
t=1

PAM (πt|x) (3)

Furthermore, the CTC-path can be mapped to the token se-
quence by using the mapping function F .

y = F(π∗) (4)

For Chinese character units based CTC acoustic model, the to-
ken sequence is the final recognition results. For syllable or
other modeling units, it still need another mapping function.



Table 1: Model architecture of the Transformers used in this
work.

Transformer N dmodel dff h dk dv
small 3 512 2048 4 512 512
big 6 512 2048 8 512 512

3.2.2. WFST search

The WFST-based [31] decoding method proposed in [12] that
enables efficient incorporation of lexicons and language models
into CTC decoding. The search graph is built by composing the
language model WFST G, lexicon WFST L and token WFST T.
The token WFST T maps a sequence of frame-level CTC labels
to a single lexicon unit. The overall order of the FST operations
is:

S = T ◦min(det(L ◦G)) (5)

where ◦, det and min denote composition, determinization and
minimization respectively. The search graph S encodes the
mapping from a sequence of CTC labels emitted on speech
frames to the final transcription. The best decoding path can
then be exported from the search graph S using the beam search.

3.2.3. N-best data expansion

For both greedy search and WFST search based decoding, we
usually take the best path as recognition result. In our work,
we find the diversity of training data is important to the perfor-
mance of spelling correction model. Thereby, we investigate
to extend the diversity of training data using the N-best lists.
For WFST-based decoding, we can easily get the top N paths
from the decoding lattice. As to greedy search based decoding,
we propose a threshold-based path retention method. At each
time-step, in addition to retaining the token with the highest
posterior probability (p1), we judge whether to retain the sec-
ond token (posterior probability, p2) based on two thresholds
(upper th, lower th). if lower th < p1 < upper th and
lower th < p2, we will keep both tokens. Otherwise, we only
keep the top one token. Based on different thresholds, we will
generate different CTC paths that can further mapped to token
sequence with Eq.4.

In our work, we also investigate to extend the training data
using data augmentation with the text-only data. We try to add
insertion, deletion and substitution errors to the original text
based on a probability distribution. Unfortunately, this method
doesn’t work well. We suspect that constructed errors can’t re-
ally simulate the types of error produced by the acoustic model.

3.3. Speller

For spelling correction model (speller), we use the Transformer
with encode-decoder architecture, which is much similar to ma-
chine translation model in [18]. The preliminary recognition
results generated by the front-end CTC-based acoustic models
with different decoding and data expansion methods are used
as input and the ground-truth transcriptions are used as output
to train the speller. We use the OpenNMT toolkit [32] to train
the Transformer based speller with default setting. Specially,
we have compared two Transformer architectures, denoted as
small and big, and the detailed configurations are as shown in
Table 1.

Table 2: CER (%) of CTC based ASR systems with various
acoustic modeling units and decoding methods (Greedy search
Vs. WFST search).

Exp Modeling units Criterion Greedy WFST
Search Search

1 syllable CTC - 5.55
2 char-2k CTC 11.93 5.21
3 char-4k CTC 7.28 5.20
4 +SMBR 8.48 4.42
5 char-6k CTC 7.33 5.25

Table 3: Performance of greedy search CTC with speller. (1M:
1 million sentences.)

Exp Modeling units Transformer Data CER%

1 syllable small 1M 8.17
20M 6.40

2 char-2k small 20M 6.25
3 char-4k small 20M 5.70
4 char-4k big 20M 5.55
5 char-6k big 20M 5.65

4. Experiments
4.1. Experimental setup

We conduct our experiments on a large Mandarin speech recog-
nition task that consists of about 20,000 hours training data
with about 20 million sentences. A test set contains about 10
hours data is used to evaluated the performance of all models.
Acoustic feature used for all experiments are 80-dimensional
log-mel filter-bank (FBK) energies computed on 25ms window
with 10ms shift. We stack the consecutive frames within a
context window of 5 (2+1+2) to produce the 400-dimensional
features and then down-sample the inputs frame rate to 30ms.
For WFST-based decoding, a pruned trigram language model
trained with the text data is used. Evaluations are performed in
term of character error rate (CER). For all experiments, we use
the same DFSMN architecture as in [33]. CTC-based acoustic
model is trained in a distributed manner using 16 GPUs and the
Transformer based speller is trained using 2 GPUs.

4.2. CTC baseline system

The performance of various baseline CTC-based ASR systems
with different acoustic modeling units and decoding methods
are shown in Table 2. CTC-based models decoded with WFST
search perform much better than greedy search, which indi-
cates the importance of linguistic information. Chinese char-
acter modeling units based CTC models with different numbers
of characters (2k, 4k, 6k) can achieve similar performance when
using WFST-based decoding, and all can outperform the sylla-
ble based CTC model. However, when decoded with greedy
search, char-4k and char-6k based CTC models significantly
outperform the char-2k based CTC model. This experimental
result also indicates the importance of linguistic information.
As to sMBR training, we find that it improves the performance
when using WFST based decoding while hurt the performance
when using greedy search based decoding. This is due to the
mismatch between training and decoding, since sMBR based
training uses the WFST-based decoding to generate the training
lattices.



Table 4: Performance of speller trained with data generated by
greedy search CTC and threshold-based data expansion.

Training data Steps/Pass Pass1 Pass2 Pass3 Pass4
D1 100000 5.55 5.18 5.02 4.89

D1-3 200000 4.73 4.68 4.46 4.36
D1-6 400000 4.62 4.38 4.28 4.21

Table 5: Performance of spellers trained with data generated by
WFST search CTC and N-best data expansion.

Training data Steps/Pass Pass1 Pass2 Pass3 Pass4
N-best(1) 100000 4.14 4.01 3.98 3.91
N-best(5) 250000 3.79 3.69 3.60 3.54
N-best(10) 350000 3.72 3.61 3.50 3.41

4.3. Greedy search CTC with speller

First, we evaluate the performance of spellers trained with the
output of baseline CTC models in Table 2 using greedy search
based decoding. Comparison of the experimental results of exp2
and exp3 in Table 3 and Table 2 shows that good preliminary
recognition result will lead to better final result. Moreover, the
amount of training data is essential to the performance. As
shown in Table 3, increasing the training data from 1 million
(1M) sentences to 20M sentences will result in more than 20%
relative improvement. Thereby, we also investigate how to ex-
tend the training data in this work. Since the big Transformer
based speller performs better than the small one, we will use the
big one in our following experiments.

In Sec.3.2.3, we have introduced the threshold-based data
expansion method for CTC-based acoustic model with greedy
search. In this experiment, we use the baseline models in Ta-
ble 3 with different thresholds to generate various training data,
denoted as D(AM upper th lower th). Specially, we use the
CTC model (exp3) and CTC-sMBR model (exp4) to generate
six datasets, denoted as D1 (CTC 1.0 1.0), D2(CTC 0.5 0.1),
D3(CTC 0.6 0.1), D4(CTC-sMBR 1.0 1.0), D5(CTC-sMBR 0.5
0.3), D6(CTC-sMBR 0.6 0.3). Different data configurations and
experimental results are as shown in Table 4. Inspired by the
SGDR [19], we propose to train the speller with 4 passes and
reset the learning rate after each pass. The training steps of
each pass is determined by the amount of training data. For
model inference, we use the results of CTC-based model with
greedy search as input and generate the final recognition result
by also using greedy search. Results show that this optimization
method will achieve a better convergence performance. More
importantly, data expansion will significantly improve the per-
formance of speller even using the training data generated by
CTC-sMBR model. As a result, we can achieve a character er-
ror rate (CER) of 4.21%, which is 42.17% relative improvement
compared to the baseline greedy search decoded CTC model
(exp3 in Table 4.2). It can also outperform the CTC-sMBR
model decoded with external language model using the WFST-
based decoding.

4.4. WFST search CTC with speller

In this experiment, we use the DFSMN-CTC-sMBR listener
(exp4 in Table 4.2) with WFST-based decoder to generate the
preliminary recognition results, which are then paired with the
ground-truth transcriptions to train the speller. We also extend
the training data with N-best lists in decoding lattice. Spe-
cially, we keep the top 1, 5 and 10 paths that result in three
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Figure 2: Error analysis of various systems.
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Figure 3: Example of results with and without speller.

training sets, denoted as N-best(1), N-best(5) and N-best(10).
These three training sets contain of about 20 million (20M),
55M and 84M sentences, respectively. We list the experimental
configurations and results in Table 5. During inference, the best
paths from the WFST-based decoder are fed into the speller to
generate the final recognition result with greedy search. The
experimental conclusions are the same to greedy search CTC
based experiments in Sec.4.3 that N-best based data expansion
method and SGDR based multi-pass training can both signif-
icantly improve the performance. Finally, the speller trained
with N-best(10) training set achieves a CER of 3.41% while
the performance of baseline DFSMN-CTC-sMBR system with
WFST-based decoding is 4.42%(in Table 2).

4.5. Error analysis

In order to understand the role of speller, as shown in Figure 2,
we plot the number of insertion, deletion and substitution errors
in the recognition results of systems with and without speller.
Results demonstrate that the speller can automatic correct many
substitution errors made by the front-end listener no matter de-
coded with or without external language model. Figure 3 shows
a representative example. Results show that the speller is able to
utilize the sentence-level linguistic information, which is help-
ful to distinguish homophone in Mandarin.

5. Conclusions
In this work, we propose a transformer based spelling correc-
tion model with encode-decoder architecture to automatically
correct errors made by CTC-based speech recognition system.
Experimental results show that the speller is able to utilize the
sentence-level linguistic information, which is helpful to auto-
matically correct the substitution errors in the recognition re-
sults. Moreover, we propose to extend the diversity of train-
ing data using the N-best based data expansion methods, which
results in more than 10% relative improvement. Finally, ex-
perimental results in a 20,000 hours Mandarin speech recogni-
tion task show that the proposed spelling correction model can
achieve a CER of 3.41%, which results in 22.9% and 53.2%
relative improvement compared to the baseline CTC-based sys-
tems decoded with and without language model, respectively.
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