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Abstract
In spite of recent progress in code-switching speech recogni-
tion, the lack of code-switch data still remains a major chal-
lenge. Different from the previous works which highly rely on
the availability of code-switch data, we aim to build an end-
to-end code-switching automatic speech recognition (E2E-CS-
ASR) system using only monolingual data. While greatly miti-
gating the code-switch data scarcity problem, the E2E-CS-ASR
will fail to learn language switch-points due to the absence of
cross-lingual signal. Indeed, we investigate the E2E-CS-ASR
model and found that the embedding feature representations
of output tokens of code-switching languages are concentrated
in disjoint clusters. We hypothesize that a gap between these
clusters hinders the E2E-CS-ASR from switching between lan-
guages, leading to sub-optimal performance. To address this is-
sue, we propose embedding feature matching approaches based
on Jensen-Shannon divergence and cosine distance constraints.
The proposed constraints will act as a cross-lingual signal en-
forcing the disjoint clusters to be similar. The experiment re-
sults performed on Mandarin-English code-switching language
pair from the SEAME corpus demonstrate high effectiveness of
the proposed method.
Index Terms: code-mixing, code-switching, feature matching,
speech recognition, end-to-end

1. Introduction
The code-swtiching (CS) is a practice of using more than one
language within single discourse which poses a serious prob-
lem to many speech and language processing applications. Re-
cently, the end-to-end code-switching automatic speech recog-
nition (E2E-CS-ASR) gained increasing interest where impres-
sive improvements have been reported [1, 2, 3]. The improve-
ments are mainly achieved for CS languages where sufficient
amount of transcribed CS data is available such as Mandarin-
English [4]. Unfortunately, for vast majority of other CS lan-
guages the CS data remains too small or non-existent.

Several attempts have been made to alleviate the CS data
scarcity problem. Notably, [5, 6] used semi-supervised ap-
proaches to utilize untransrcibed CS speech data. On the other
hand, [2, 3] employed transfer learning techniques where ad-
ditional monolingual corpora are either used for pre-training
or joint-training. On the account of increased training data,
these approaches achieved significant improvements. However,
all these approaches rely on the cross-lingual signal imposed
by some CS data and other linguistic resources such as word
aligned parallel corpus.

In this work, we attempt to build an E2E-CS-ASR using

only monolingual data without any form of cross-lingual re-
source. The only assumption we make is an availability of
monolingual speech corpus for each of the CS languages. This
set up is important and common to many low-resource CS lan-
guages, but has not received much research attention. Besides,
it will serve as a strong baseline performance that any system
trained on CS data should reach.

One of the major drawbacks of using only monolingual
data to train E2E-CS-ASR is the absence of cross-lingual sig-
nal. As a result, the E2E-CS-ASR will fail to learn language
switch-points. Indeed, we examined the shared embedding fea-
ture space learned by E2E-CS-ASR and observe that output to-
ken representations of CS languages are concentrated in dis-
joint clusters (see Figure 3a). We hypothesize that a gap be-
tween these clusters hinders the E2E-CS-ASR from switching
between languages, leading to sub-optimal performance.

To address this problem, we propose to bridge the gap be-
tween clusters using the feature matching approaches [7] based
on Jensen-Shannon divergence and cosine distance constraints.
These constraints are incorporated into the objective function
of E2E-CS-ASR where they will act as a cross-lingual signal
source forcing the embedding feature representations of CS lan-
guages to be similar. In addition, the constraint will act as a
regularization term to prevent overfitting. Our method is in-
spired by [8, 9] where intermediate feature representations of
text and speech are forced to be close to each other. We evalu-
ate our method on Mandarin-English CS language pair from the
SEAME [4] corpus where we removed all CS utterances from
the training data. Experiment results show that our method sig-
nificantly improves the recognition accuracy of E2E-CS-ASR
built using only monolingual data.

The rest of the paper is organized as follows. In section 2,
we review related works addressing the CS data scarcity prob-
lem. In section 3, we briefly describe the baseline E2E-CS-
ASR model. In section 4, proposed embedding feature match-
ing approaches are presented. Section 5 describes the exper-
iment setup and discusses obtained results. Lastly, section 6
concludes the paper.

2. Related works
An early approach to build CS-ASR using only monolingual
data are so-called “multi-pass” systems [10]. The multi-pass
systems are based on traditional ASR and consist of thee main
steps. First, the CS utterances are split into monolingual speech
segments using the language boundary detection system. Next,
obtained segments are labeled into specific languages using the
language identification system. Lastly, labeled segments are de-



coded using corresponding monolingual ASR system. How-
ever, this approach is prone to error-propagation between dif-
ferent steps, not to mention that language boundary detection
and language identification are difficult tasks.

More recently, the semi-supervised approaches have been
explored to circumvent the CS data scarcity problem. For in-
stance, [5] used their best CS-ASR to transcribe a raw CS
speech, the transcribed speech is then used to re-train the CS-
ASR. In the similar manner, [6] employed their best CS-ASR
to re-transcribe the poorly transcribed portion of the the train-
ing set and then re-build the system. The semi-supervised ap-
proaches are promising direction for increasing CS data, how-
ever, they depends on the availability of transcribed CS data and
other systems such as language identification.

In the context of end-to-end ASR models, the transfer learn-
ing techniques are widely used to alleviate the CS data scarcity
issue. For example, [2] used monolingual corpora to pretrain
the model followed by the fine-tuning with CS data. On the
other hand, [3] used both CM and monolingual data for joint-
training followed by the standard fine-tuning with the CS only
data. While being effective, the transfer learning based tech-
niques highly rely on the CS data.

Generating synthesized CS data using only monolingual
corpora has been also explored in [11, 12, 13, 14], however,
they only address the textual data scarcity problem.

3. Baseline E2E-CS-ASR
Figure 1 illustrates the baseline E2E-CS-ASR model based on
hybrid CTC/Attention architecture [15] which incorporates the
advantages of both attention-based encoder-decoder model [16]
and Connectionist Temporal Classification (CTC) model [17].
Specifically, the attention-based decoder and CTC modules
share a common encoder network and are jointly trained.

Encoder. The shared encoder network takes a sequence
of T -length speech features x = (x1, . . . , xT ) and trans-
forms them into L-length high level representations h =
(h1, . . . , hL) where L < T . The encoder is modeled as a
deep convolutional neural network (CNN) based on the VGG
network [18] followed by several bidirectional long short-term
memory (BLSTM) layers.

h = BLSTM(CNN(x)) (1)

CTC module. The CTC sits on top of encoder and com-
putes the posterior distribution PCTC(y|x) of N -length output
characters sequence y = (y1, . . . , yN ). To computePCTC(y|x),
CTC introduces framewise letter sequence with an additional
“blank” symbol z = (z1, . . . , zT ) and factorizes PCTC(y|x) us-
ing conditional independence assumption as follows:

PCTC(y|x) ≈
∑
z

∏
t

P (zt|zt−1,y)P (zt|x)P (y) (2)

where three distribution components are: state transition proba-
bility P (zt|zt−1,y), framewise posterior distribution P (zt|x)
and character-level language model P (y). The state transition
probability enforces the monotonic alignment between speech
and character sequences, and is obtained using the set of pre-
defined rules (see Eq. (21) in [19]), whereas framewise poste-
rior distribution is modeled as follows:

P (zt|x) = Sofmax(Lin(h)) (3)

where Lin(·) is a linear projection layer with learnable matrix
and bias parameters. Lastly, the Eq. (2) is efficiently computed
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Figure 1: Hybrid CTC/Attention end-to-end ASR architecture.

using dynamic programming. The CTC loss is defined as a neg-
ative log-likelihood of the ground truth character sequences y∗:

LCTC = − logPCTC(y∗|x) (4)

Attention-based decoder module. Unlike the CTC
module, the attention-based decoder directly computes the
PATT(y|x) based on the chain rule:

PATT(y|x) =
∏
n

P (yn|y<n,x) (5)

P (yn|y<n,x) = Softmax(Lin(sn)) (6)
sn = LSTM(sn−1,Lin(yn−1), cn) (7)
cn = Attention(sn−1, cn−1,h) (8)

sn is a hidden state produced by unidirectional long short-
term memory (LSTM) which accepts previous hidden state
sn−1, previously emitted character yn−1 and context vector
cn. The context vector cn encapsulates the information in the
input speech features required to generate the next character
and is produced by Attention(·) module. The loss function of
attention-based decoder module is computed using Eq. (5) as:

LATT = − logPATT(y∗|x) (9)

Finally, the CTC and attention-based decoder modules are
jointly trained within multi-task learning (MTL) framework as
follows:

LMTL = λLCTC + (1− λ)LATT (10)

Our proposed method will augment the Eq. (10) and mainly
impact the learnable matrix parameter of linear projection layer
in Eq. (6) as will be explained in the following section.

4. Embedding feature matching
In this work, we aim to build E2E-CS-ASR using only mono-
lingual data. This setup is essential for vast majority of CS lan-
guages for which CS data is non-existent. However, an E2E-
CS-ASR model trained on monolingual data will fail to learn
language switch-points between and within utterances, due to
the absence of cross-lingual signal. We investigate the E2E-CS-
ASR and found that the shared feature spaces of output tokens
of CS languages in CTC module (Eq. (3)) and input embedding
matrix (Eq. (7)), modeled by linear projection layers Lin(·), to
be highly similar. However, the output token representations
learned by output embedding matrix (Eq. (6)) of attention-based
decoder module are concentrated in two disjoint clusters (see
Figure 3a). We hypothesize that a gap between clusters restricts
the E2E-CS-ASR model from switching between languages.



To bridge the gap between these clusters, we propose to em-
ploy feature matching approaches [7] based on Jensen-Shannon
divergence (JSD) and cosine distance (CD) constraints. These
constrains will typically act as a cross-lingual signal source
which will force output token embedding feature representa-
tions of CS languages to be similar. Specifically, JSD will en-
force the learned output token embedding feature representa-
tions of CS languages to posses similar distribution. On the
other hand, CD will enforce the centroids of two clusters to be
close to each other.

Jensen-Shannon divergence. First, we assume that
learned output token representations of CS language pair L1

and L2 follow a z-dimensional multivariate Gaussian distribu-
tion:

L1 ∼ Normal(µ1,Σ1) (11)
L2 ∼ Normal(µ2,Σ2) (12)

The JSD between these distributions is then computed as:

LJSD =tr(Σ−1
1 Σ2 + Σ1Σ−1

2 )

+ (µ1 − µ2)T (Σ−1
1 + Σ−1

2 )(µ1 − µ2)− 2z (13)

Lastly, we fuse the JSD constraint with the loss function of
E2E-CS-ASR using Eq. (10) as follows:

LMTL = λLCTC + (1− λ)(αLATT + (1− α)LJSD) (14)

where α ∈ [0, 1] controls the importance of the constraint.
Cosine distance. We first compute the average output to-

ken representation vectorsC1 andC2 corresponding to the clus-
ter centroids of CS language pair L1 and L2 respectively. The
cosine distance between two centroids is then computed as:

LCD = 1− C1 · C2

‖C1‖ ‖C2‖
(15)

The CD constraint is integrated into the loss function in a simi-
lar way as Eq. (14).

5. Experiment
5.1. Dataset

We evaluate our method on Mandarin-English CS language pair
from the SEAME [4] corpus (Table 1). We used standard data
splitting1 on par with previous works [1, 6] which consists of
3 sets: train, testman and testeng . To match the no CS data
scenario, where we assume that we only posses monolingual
data for each of the CS languages, we removed all CS utterances
from the train set. The testman and testeng sets were used for
evaluation. Both evaluation sets are gender balanced and consist
of 10 speakers, but matrix2 language of speakers is different, i.e.
Mandarin for testman and English for testeng .

5.2. E2E-CS-ASR model configuration

We used ESPnet toolkit [20] to train our baseline E2E-CS-ASR
model. The encoder module consists of 4 CNN layers followed
by 6 BLSTM layers each with 512 units. The attention-based
decoder module consists of single LSTM layer with 512 units
and employs hybrid attention mechanism [21]. The CTC mod-
ule consists of single linear layer with 512 units and its weight

1https://github.com/zengzp0912/SEAME-dev-set
2The dominant language into which elements from the embedded

language are inserted.

Table 1: SEAME dataset statistics after removing the CS utter-
ances from the train set. ‘Man’ and ‘Eng’ refer to Mandarin
and English languages, respectively.

train testman testengMan Eng
# tokens 216k 109k 96k 54k
# utterances 21,476 17,925 6,531 5,321
(# CS utterances) (0) (0) (4,418) (2,652)
Duration 15.8 hr 11.8 hr 7.5 hr 3.9 hr

in Eq. (10) is set to 0.2. The network was optimized using
Adadelta with gradient clipping. During the decoding stage,
the beam size was set to 30.

5.3. Results and analysis

The experiment results are shown in Table 2. We split the test
sets into monolingual and CS utterances to analyze the impact
of proposed method on each of them. We first report the mixed
error rate (MER)3 performance of traditional ASR model built
using Kaldi toolkit [22] (row 1). The MER performance of the
baseline E2E-CS-ASR model is shown in the second row. Fol-
lowing the recent trends [1, 2, 3], we applied speed perturbation
(SP) based data augmentation technique [23] and used byte pair
encoding (BPE) based subword units [24] to balance Mandarin
and English characters (rows 3 and 4). We tried different vo-
cabulary sizes for BPE and found 4k units to work best in our
case, resulting in much stronger baseline model.

Table 2: The MER (%) performance of different ASR models
built using monolingual data. The test sets are further split into
monolingual (mono) and code-switching (CS) uttearances.

Model
testman testeng

mono
utts.

CS
utts. all mono

utts.
CS
utts. all

Kaldi-TDNN - - 39.1 - - 45.2
E2E-CM-ASR 57.7 73.3 70.6 73.7 80.6 78.3
+ SP 39.4 56.0 53.2 54.2 65.9 62.2

+ BPE (4k) 38.1 51.8 49.5 52.9 61.4 58.9
+ CD 34.4 49.0 46.3 47.2 58.5 55.1
+ JSD 34.9 48.8 46.3 47.8 57.6 54.6

+ CD 34.0 48.1 45.6 47.2 57.4 54.4

The performance of models employing proposed CD and
JSD constraints are shown in rows 5 and 6, the interpolation
weights for CD and JSD are set to 0.9 and 0.97, respectively.
Both constraints gain considerable MER improvements. No-
tably, we found that CD constraint is more effective on mono-
lingual utterances, whereas JSD constraint is more effective on
CS utterances. To complement advantages of both constraints,
we combined them as follows:

LMTL =λLCTC + (1− λ)(αLATT+

(1− α)(βLJSD + (1− β)LCD)) (16)

where α and β are set to 0.05 and 0.9, respectively. The combi-
nation of two constraints significantly improves the MER over
the strong baseline model by 3.9% and 4.5% on testman and
testeng , respectively (row 7). These results suggest that pro-
posed feature matching approaches are effective.

3The term “mixed” refers to different token units used for English
(words) and Mandarin (characters).



5.3.1. Changing interpolation weight

We repeat the experiment with different interpolation weights
for CD and JSD constraints (hyperparameter α in Eq. (14)) to
investigate its effect on MER performance. Figure 2 shows that
proposed constraints consistently improve the MER and best
results are achieved for interpolation weights in range 0.8-0.99.
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Figure 2: The impact of constraint interpolation weights on
MER performance for testeng (blue) and testman (red) sets.

5.3.2. Visualization of shared embedding feature space

To gain insights from the effects of proposed method on the
shared embedding feature space, we visualize the learned out-
put token representations using dimensionality reduction tech-
nique based on principle component analysis (PCA). Figure 3
shows the shared embedding feature space without (3a) and
with (3b,3c,3d) proposed constraints. Note that the learned
representations are split into two clusters when proposed con-
straints are not employed. Visualization of shared embedding
feature space confirms that our method is effective at bridging
the gap between two clusters.
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Figure 3: PCA visualization of shared embedding feature space
of output token representations without (a) and with (b,c,d) pro-
posed constraints.

5.3.3. Applying language model

To examine whether proposed constraints are complementary
with language models (LM), we employed LMs during the de-
coding and rescoring stages (see Table 3). All LMs were trained
on monolingual transcripts of train set and applied to our best
model employing both JSD and CD constraints. In the decod-
ing stage, we used shallow fusion technique [25] to integrate
subword-level recurrent LSTM LM [26]. During the rescoring
stage, we examined Kneser-Ney smoothed 3-gram LM and re-
current LSTM LM, both LMs are mixed word-character level
and used to rescore 50-best hypotheses. Obtained MER im-
provements show that proposed constraints and LMs comple-
ment each other.

Table 3: The MER performance after applying language model
during the decoding and rescoring stages.

Decode LM Rescore LM MER (%)
testman testeng

No No 45.6 54.4
LSTM (subword) No 45.1 53.7
LSTM (subword) 3-gram (mixed)
LSTM (subword) LSTM (mixed)

6. Conclusions
In this work, we proposed embedding feature matching ap-
proaches for E2E-CS-ASR models trained on monolingual data.
Specifically, we examined two approaches based on Jensen-
Shannon divergence and cosine distance constraints which are
incorporated into the objective function of the E2E-CS-ASR
models. The former one is used to enforce learned embed-
ding representations of CS languages to poses similar distri-
butions, while the later one is used to pull together output
token representation centroids of CS languages. We evalu-
ated proposed method on Mandarin-English CS language pair
from the SEAME corpus where CS utterances were removed
from the train set. The experiment results show that the pro-
posed method outperforms the strong baseline model by a large
margin, i.e. absolute 3.9% and 4.5% MER improvement on
testman and testeng , respectively. The visualization of shared
embedding feature space confirms the effectiveness of the pro-
posed method. In addition, our method is complementary
with language models where further MER improvements can
be achieved. Importantly, all these improvements are achieved
without using any additional linguistic resources such as word
aligned parallel corpus or language identification system.

We believe that proposed method of matching embedding
feature representations of output tokens of CS languages can be
easily adapted to other scenarios and benefit other CS language
processing applications. For the future work, we plan to test the
proposed method on scenarios with larger amount of monolin-
gual data and explore efficient ways to further improve MER
performance using CS text or speech only data.
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